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A periodic structure consisting of alternating layers of two different elastic solid phases of the same 

chemical substance in considered. It is assumed that the phase transformation is accompanied by a 

small a&e “natural” deformation (ND) which turns the reference configuration of the “plus” phase 

into the reference configuration of the “minus” phase. The gradients of the displacements produced by 

the ND are specified by the constant tensor A,,. The interphase boundaries between different phases 

are assumed to be coherent [l], i.e. such that the transformation preserves particle adjacency. The 

stability of an equilibrium system in which the phases are in homogeneous states with constant 

displacement gradients K; relative to their reference configurations L studied. The connection 

between the tensora K; and Ki is given by relations (1) and (2) of [2]. From these formulae it follows 

that for a periodic structure the statea in layers of the same phase are identical. The states in phase 

“minus” layers are uniquely defined by the given state of phase “plus”, the ND transformation and the 

known elastic moduli of the phases. 

Unlike the special case considered previously [3], here we cotider the general situation when both 

tensor8 5, Ar and the layer thicknesses are arbitrarily specified. The influence of these parameters on 

the stability of the two-phase periodic structure is analysed. A “shear instability” effect is observed, 

which is a distinctive feature of heterogeneous layered structures with coherent interphase boundariea. 

1. STATEMENT OF THE PROBLEM 

WE WILL use a Cartesian system of coordinates (x, z). Let z E (0, 2H+) be the “plus” phase 
layer, and z E (-2H_, 0) be the “minus” phase layer, The problem of the stability of piecewise- 
homogeneous configurations with plane interphase boundaries reduces [l] to an analysis of the 
sign-definiteness of the spectral eigenvalues x of a system of linear homogeneous differential 
equations with constant coefficients. Special boundary conditions for this system contain 
information on the stressed states of the phases. If for the equilibrium configuration under 
consideration at least one negative eigenvalue x of the spectral problem exists, that config- 
uration is unstable. In the case of isotropic incompressible phases in a state of plane 
deformation [4] (the plane of deformation being perpendicular to the layers), the spectral 
problem has the following form [3] 

(1.1) 
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at the interphase boundary 

[$3$+0, [-m-‘p’+*c$L]=O 

[,:(!$+~)+a~]=0 
aa; 

a-z-- p:+ ?$_+ig _2c:+$+mlp; =() ( 1 
a ~ [m%l -K22)1 

[~22 + A22 1 
= -m-‘A--‘(@:, -0&)(1-x-‘)+ 4lt_A,,) 

p ~ lK12 + ‘12 1 _ A-1 (2L\ 

[‘h + A22 1 
(12) + (x - w2 / CL,) (1.3) 

(1.2) 

Here c, is the velocity of transverse threedimensional waves, M is the mass density in the 
initial single-phase configuration, a,(~, z) are the perturbations (variations) of the particle 
displacement field, i= 1 corresponds to orientation along the x axis, i= 2 corresponds to 
orientation along the z ax&$(x., z) is the limiting value of the quantity --X(&J, /&+a~, /at) for 
incompressible phases with h being the Lame coefficient, the [ .] denotes a jump: [a] = a+ -a_, u 
is the shear modulus, and a and p are parameters of the stressed state of the two-phase 
equilibrium configuration. 

Consider the stability of a periodic structure with respect to periodic perturbations of the 
displacement fields a: and pressure pi, i.e. 

Ui(X,Z)=Ui(X,Z+2(H+ +H_)) 
(I-4) 

y’(x,z) = p’(x,z + 2(H+ + H_)) 

A “periodic cell” of thickness 2(H+ + H_) and composed of two neighbouring layers arises 
naturally in the analysis of the equilibrium and stability of this system. All properties of the 
system are repeated when going from one cell to the next. Solutions of the spectral problem on 
the external boundaries of the cell are subject to matching conditions. 

We say that the two-phase periodic structure is stable if the solutions a,(~., z) and p’(x, z) of 
spectral problem (l.l), (1.2) that are periodic along the z axis and are oscillatory in nature 
along the interphase boundaries correspond to non-negative eigenvalues IC. If there are 
negative eigenvalues, the corresponding system is said to be unstable. 

2. SYMMETRIC AND ANTISYMMETRIC PERTURBATIONS 

The general solution of the system of differential equations (1.1) in the cell z E (-2H_, 2H+) 
can be represented in the form of the sum of symmetric perturbations i*, pi+ and anti- 
symmetric perturbations g:, pk 

a,? = fi* + g,+ , P; = Pi* + Pi* 

fi* =i(F,*chk(zTH,)+F,f~,ch&&(z,N,))exp(-ikx) 

ft =-(F,*shk(zTH,)+F,fsh&(zTH,))exp(-ikr) 

(2.1) 
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Pi* = -q&&i chR(zi H,)exp(-ikx), e* E (1- qcii)l’*, q E I&-* 

Here k is the real wave number and Ftz are constants. For antisymmetric perturbations g,?, 
pi* the cosines and sines in the formulae for fi, p;* are exchanged and instead of the 
constants Fl:z we use G,f ,. 

3. DISPERSION RELATIONS AND THE EQUATION OF NEUTRAL STABILITY 

Substituting (2.1) into the interphase boundary conditions (1.2) we obtain a linear 
homogeneous system of algebraic equations in Ftz, G,f ,. The condition for a non-trivial 
solution (2.1) of the spectral problem (l.l), (1.2) to exist is that the determinant of the matrix 
D for this system should vanish. 

Computing the determinant of D we obtain a dispersion relation for finding the spectral 
eigenvalue x 

lD]=AP4+BP2+C=0 

A=R,*R,, C=df.db, B = 2414, + W4, + WZ~ 

R, s q(S?cthh_ +S:cthh+ -4c:+{+cthh+{+ -4c:_J_cthh_{_) 

4, = G+R+ th h+!,+ - 2c:+5+Q+ th h+)@_ th kS_ - Q-t- th h_) - 

-(2c:+5+ th h+ - S+ th h+5+ )<Q!{_ th- h- - R! th h-e_) - 

-4 th h+ th h+,5+ (2cf_5_R- - S-Q ). B2, 2 q2a2{_ th h+ th h+{+ - 

-<s: thh+S+ -4c:+5+ th h+)U? th h-5_ - Q_“(_ th h._) 

B3t = (2c:_Q5_ th h_ - S-R_ th h_&J<5+ th h+ - th h+t+) + 

+(S+R+ th b+6+ - 2c:+S+Q+ th h+ )(th h-t_ - 5_ th h_) + 

+(Q+e+ th h+ -R+ th h+~+M_ th h-k- - 2&S_ th h_.) + 

+(R_ th h-S_ - Qt_ th h_)(2c:+5+ th h+ - S+ th h+e+) - 

-q*(+ th h- th h-t_ - q*c_ th A+ th h+t,+ 

df * q(~+t-(Q! th h_ + Q: th h+) - t+R! th h-t- - S-R: th h+t,+) 

&=&+a, R,=2&.-q+a, S,=2&-q, &,9kii* 

(3.1) 

The formulae for R,, Bi, (i = 1, 2,3) and d, are obtained from formulae for Ri, Bi, and d, by 
interchanging the tangents and cotangents. 

Expanding the indeterminacy (q4 II D II),,, we arrive at the equation of neutral stability 

(2cL+c,_ >* (@oDj),=, = ~$3~ + I$’ + d = 0 (3.2) 

asa,a,, b = 24‘4, + b,,b, + b3,b2e. d = d,d, 

a, =l_lfi+l+&, E=a/(2cl+c,_) 

4t = -E(Xn+l+ + th* h+ + f+t ) + n+L fi - n-t+ 1 fi 

bt t E’(Xn+l_ +th2 h+)-2Et_n+&- n+n_ 
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b 3t E -(X-‘l+n_ + Xl-n, + th* h_ + th* h, + 2r+r_) 

d, =-Ei*(l-~+1+/~)+2E(t++r_)+n_/~+n+~ 

t*=&(l-th*&), l,=thh,-r,, n,=thk+-er, 

The formulae for a,, bk (i = 1, 2,3) and d, are obtained from formulae (3.2) by replacing the 
tangents by cotangents. 

For the two-phase periodic structure to be stable Eq. (3.1) must not have negative roots 4. 
We shall study the influence of the parameters a, B and h, on the stability of two-phase 

equilibrium. 

4. THE g=O CASE 

In this case symmetric and antisymmetric perturbations are in themselves separate solutions 
of the spectral problem (l.l), (1.2). (This assertion does not hold when b + 0.) 

If the condition p = 0 holds in the “plus” phase layers, and II E (-oo, 3) u (II{, +OO) (II E (a, 
@)u(Tzi, +-)), then the equilibrium of the structure is unstable with respect to symmetric 
(antisymmetric) perturbations. Here C$ are the roots of the equation d, = 0, and i$ z are the 
roots of the equation d, = 0. 

The parameter a defined by (1.3) describes the “non-hydrostatic jump” of the stresses in the 
phases across the coherent boundary. The growth in absolute magnitude of this jump, as was 
shown above, leads to instability in the periodic structure. This result agrees with those 
obtained in [2,5]. 

We shall indicate the unstable domains for some physically interesting limiting cases. 
We denote by s the concentration of the “minus” phase in the periodic cell: s = h_(h+ +h)-‘, 0 d se 1. 

Then h_ =sh, h+ =(1-s& where h=h+-h... 
If O<s<l and h++m, then Zt’-,-l and Zi$‘+l. 
Suppose h + 0 and 0 c s < 1 (that physically corresponds to the case of large perturbation lengths k” 

and finite layer thicknesses H, or the case of finite perturbation lengths and small layer thicknesses). The 
structure will be unstable with respect to symmetric (antisymmetric) perturbations if Z~((--O, E&) 

(a l (-_, ?I&) u (0, -)) since 

iii{, H lima{ = -_(s/fi+(l-s)fi), lilTl25~ =+m 

(4.1) 
E& =limZ[ =-(~/&+(l--)Jj;)-~, limijs,s =O,(h+O). 

When s +O, h - 1 (i.e. /I+ - 1, /I_ - 0). that corresponds to a two-phase structure with thin periodic 
nucleation layers, the system will be unstable with respect to symmetric (antisymmetric) perturbations if 
Ee(-oo, +)u(~@nh2h+ +2h+)(sinh2h+ -2h+)-‘, +=), (?I:(-=, -l$&(O, +m)). 

If s -+O, h ++= (i.e. h, + +a~, h-e+=), we have the solution of the stability problem for a plane 
nucleation layer of a new “minus” phase in an infinite elastic matrix of the original “plus” phase [S]. 

The roots ?Ililf, and ?I& were calculated on a computer for various values of the parameters s, h and x. 
Figure 1 shows the behaviour of qz(s), q*(s) for h = 2, x= 0.1, and also of Z&(s) and E&(s) for 
x = 0.1. (?i!?i!f + +- and q + 0 as h + 0.) The dashed lines show ?Zf and the solid lines show Ht. Graphs 
of the functions qf #I) and II&(h) were given in [3]. 

5. EXAMPLE 

Consider the case of a cubic expansion/compression ND (A,, = 66,) with x = 0.1, CT,, = 0. If 6 > 0 (6 < 0) 
then the phase transformation is accompanied by cubic expansion (compression) of particles of the less 
stiff “plus” phase and the formation of the stiffer “minus” phase. 
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FIo.1. 

5A &at is t&e less SW p&rtsc the prin*ai S&Bsses in the dirmtion of the &tqwut to zhe 
interphase boundary are zero (a;, =O$, Mere the same stresses in the more rigid phase are given by 
foImula (2) of [2]: $1 = J&Y& -4p_S. The critical values of the stress o, (02 50 o& = uz) and the critical 
values of the parameter iii are related by formula (1.3) 

(Asterisks identi@ critical values.) 
If the less stiff phase is in a hydrostatb state (ufi =c& =O} then ?ii=-410. In this case we have 

instability with respect to both symmetric and antisymnetrk perturbations ([3& Fig_ 1) when s=X_ A 
more detailed numerical analysis shows that this is also true for all values of the ~n#n~~o~ s. Fox a 
c&ii 6%xp&ou (~~~~ou~ m the ~~~~~ uecemzy for s&&By cm a* be aatiafied as 8 rest%% 
of the application of compmssive (extensive) principal stresses along the z a& o, B 0 (aa 7t Cl), 

5.2. Suppose that in the stiffer phase the principal stresses ia the tangential direction to the interphase 
boundary vanish (a; = 0). Ike ai, = O$o;, +4k+S ([2], &umula (2)). The critical values of 8 and a21 
are related by the equatiou 

If the stiffer phase is in. a hydrostatic stateV then iZ= -$M. Is this ease the aecessary conditions for 
stability are satisfied by both types of perturbation (I$ 1)" Numerical analysis shows that this is also true 
for any s aud JI. 
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correspond to the critical compressive (extensive) stress function o;(s). In Fig. 1 these functions have 
clear-cut maxima for both types of perturbation. Here the maxima are displaced towards the s = 1 axis. 
This shows the onset of the stabilizing influence of increasing concentration of the stiffer phase. When 

s + 0 or s + 1 the margin of stability diminishes, i.e. a considerable reduction in the thickness of one of 
the phase layers destabilizes the system. 

The lower branches of iii* (i.e. ?if”) are represented by monotonic functions of s when h = 2. As the 
concentration of the stiffer (“minus”) phase increases the absolute value of the critical stresses o,*(s) for 

symmetric perturbations increases monotonically, and decreases for antisymmetric perturbations (see 

formula (5.1)). 

6. ANALYSIS OF THE SOLUTION WHEN p#O. THE “SHEAR INSTABILITY” EFFECT 

First we will explain the physical meaning of fl. We put E+ = K&, and E- =A 12j + ~6~. 
Consider straight material lines passing through the initial single-phase configuration ( which is 
identified with the reference configuration of the “plus” phase) perpendicular to the pre-image 
surface of the interphase boundary. The quantity do,, defines the angle of deviation of the 
material lines in the reference configuration of the “minus” phase from the position in the 
initial configuration. The quantities K& define the angle of deviation of the material lines in 
the actual configuration from their positions in the reference configurations. The quantities E* 
define (respectively for each phase) the angles of deviation of the above-mentioned material 
lines in the actual configuration from their initial geometrical positions. Thus the quantity [E] 
has the geometrical meaning of the jump in the angles of inclination of the above-mentioned 
material lines in the actual two-phase configuration. The parameter p is related to the jump in 
the inclination of the angles [E] by the equation 

p = -2A-’ [E]. 

Sufficient conditions for instability 

If b $0, the complicated form of Eqs (3.1) and (3.2) prevents us from analysing the sign- 
definiteness of the eigenvalues of the spectral problem in the same volume as was done for 
fl= 0. Here we will give a qualitative discussion and formulate some hypotheses. 

We will consider the neutral stability relation (3.2) for fixed x, ?Z, s and h as an equation in 
B. This equation can have: (A) four real roots &B1, +& (we take 0 c & < &), (B) two imaginary 
roots *& and two real roots j$$ (fi, > 0). Case (C), in which (3.2) does not have real roots, is 
also possible. 

It follows from (3.1) that q4 II DII++=- as q-+ -. Hence Eq. (3.1) must have a negative 
root q if b satisfies the inequality (q4 II D II),, c 0. In case (A) this inequality is satisfied when 
& <I p I< /IS2 and in case (B) when I b I< p,. This means that for the given values of p the periodic 
structure is unstable. 

For fiz cl b I in cases (A) and (B), and also for any B in case (C), the periodic structure 
appears to be stable. That assumption is based on the following property of relation (3.1): for 
any fixed S, h # 0, x and ?Z there exists a value of PO, (&, > 0), such that for any /!! satisfying 
&, <If3 I, Eq. (3.1) has no negative roots q. 

We will now investigate the stability when I p I< PI in case (A). Case (A) can only occur when 
d,d, > 0, which is satisfied if: (1) IZ E (-, min@, Zi$) u(max@/, c:), +-) or (2) E E (max@, 
G$), rni@, ZZ;)). It appears that in the first case the state is unstable, and in the second case 
stable. This hypothesis is based on the result which was obtained when considering states 
satisfying b = 0. 

Asymptotic behaviour of long-period perturbations. Effect of “shear instability” 

We put y = p” in (3.2). We will investigate the behaviour of the roots y1 and y, of Eq. (3.2) 
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in the case of long-period perturbations. When h + 0 and s E (0, 1) the limiting values of the 
coefficients of this equation have the form 

The root y1 is calculated from the formulae 

(6.3) 

Yl =iF(E+H(&+l/&)), s=lf2 (6.4) 

When h-,Owefindthaty,-,-tmif~‘ciiior~+<~,iji,d y,-+-ifE_<7jicE+. 
Different values of y, and y, give the limiting situations for cases (A), (B) and (C). We have 

case (A) if yi > 0 and yz -+ ~0, case (B) if y1 > 0 and yz -+ 
(C)ify,>Oand yz+-. 

- or y, < 0 and y, -+ +oo, and case 

We will elucidate the relative positions of the roots II&, lZ& and q. From formulae (4.1) 
and (6.3) it is clear that I!&, ?I& and II_ are negative, while II* is positive. A more detailed 
analysis shows the following 

l.if s&S (Sz1J~/(li-J~)), ~“1 orif s<S, ~“1, then E&GE&GE_; 
2.if s&S, ~“1 orif sa*s, x&l, then lI$,6Z&, Kf8 SE_; 
3.if s=g, then Ii+++, E_= -2/(+x+1/+x), &gs=E_, iZ&=llE_,i,e. iji;f,G-ldE_=~gl. 
It is impossible for the inequalities II_ c ?I& and II_ c II& to be satisfied simultaneously. 
Knowing the possible positions of the roots Kfl, !I.$ and ‘iji, along the E axis, we 

qualitatively construct graphs of the behaviour of the critical value of the parameter fl as a 
function of iii: p = d(y& (Fig. 2). In Fig. 2 regions of instability are denoted by 1 and regions 
where the sufficient condition for instability is not satisfied are denoted by S. There is a 
j~~ica~on for a~~ that in the S regions the structure is stable (see the analysis of cases 
(A)-(C) given above). From the graphs it is clear that increasing the absolute value of II leads 
to instability. Increasing the absolute value of p can stabilize the system in a range of cases. 
This picture is qualitatively identical with the results of investigations of the local stability of 
coherent bo~d~ies [l-3). However, here a qualitatively new effect occurs: if ~~(~~~, 
E&), E_), then as Ifi1 increases the system goes from the stable domain to the unstable domain. 
The value of IPI can be increased through the shear stresses a& Hence it is natural to call this 
effect the “shear instability effect of a periodic two-phase structure”. “Shear instability” also 
occurs in the problem of the plane nucleation of a new phase in an ignite elastic matrix [S]. 

In the context of asymptotically long-period perturbations we will consider the limiting cases 
X--+9 z--PO and x=1. 

From formulae (4.1) and (6.3) it is clear that II+ + +a~, II_ + 0, II& -+ 0, II& + --oo if 1~ -+ 00 
or x +O. For x + 0, we have E_ /E& + s/(1-s). This means that lI& >?I_ when s >X and 
i3il[;eE_ when SC%. For x-+ 0 we have iZ_ /Eh --+ (I- s)s. This means that -II s: ?I_. when 
s 3% and ?I& >E_ when s cx. Consequently, in a periodic structure (with x%-l or ~41) the 
“shear instability” effect must occur when the concentration of the less stiff phase exceeds the 
~on~n~ation of the stiffer phase. 

For x = 1 we have II& =IZ.& = -1, -1 d II_ d 0. We note that for x = 1 the parameters Z and p 
depend only on the form of the ND transformation tensor Ace1 and do not depend on oii. This 
means that one cannot influence the stability by changing the stressed state. In this case for 
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Gl izf,= u_ z 
F10.2 

-1 c E <iii the system will be stable if I A, I is smaller than some critical value, and unstable if 
I A, I is greater than that critical value. Thus one can talk of “shear instability” due to the 
“natural” shear deformation. 

We shall analyse the dependence of the critical values of the parameter fl on the concen- 
tration s. It follows from (6.2) that these values p(s) depend strongly on the position of the 
parameter E relative to E&, II& and II*. Figure 3 shows graphs of sl(s) (the line ZJ,‘) E&(S) 
(the curve MM’), E+(S) (the curves OK and K’N), E_(s) (the curve OiV’ZV) and E&(s) (the line 
ON) for x = 0 and 1. Regions corresponding to the three cases (A)-(C) are marked (bearing in 
mind limiting situations corresponding to asymptotically long-period perturbations), and those 
regions where “shear instability” occur are marked with an asterisk. Analysis of these graphs 
enables us to represent all possible forms of g(s) for various values of Ii. 

We fix the value of the parameter Ei (5 = II’). The line E = iii’ intersects the curves E*(s) at 
the points S, and s,, and the curves II&(s) and E&(s) at the points $ and s:. (As can be seen 
from the graphs, these points do not always exist.) The concentration values S, and S, 
correspond to the vertical asymptotes of the function g(s), while s,” and S: are zeros of g(s). 
Graphs of B(S) for various fixed E when x = 0, 1 are shown in Fig. 4 (B(S) = Jy,). Using the 
analysis performed above for cases (A)-(C) one can find in Fig. 4 the stable and unstable 
domains. 

Consider an example. We will denote the points of intersection of the curves E_(s) and E&(s) in Fig. 3 
by Z’ and 8” (E” cE’). Suppose E’ E (3, Z). Then for s E[O, sf]u[q, l] the two-phase structure is 
unstable for all p, for s ~(~10, s,) we have “shear instability”, for SE[~, $1 the system is stable for all p, 
and for s E (s,“, s2) the system can become stable when I PI is increased (Fig. 4b, iii’ = -0.4). 

The above analysis shows, in particular, that when s + 0 or s + 1 the periodic structure 
cannot be stable with respect to long-period perturbations for any values of the stressed-state 
parameters E and p. 
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Fm.3. 

Fm.4. 

The asymptotic form of small concentrations 

If s-+0 (or s-+1) and h+O, then in I’@. (3.2) we have a/b-+0, d/b+0 and, con- 
sequently, Zji’B” + 0. Hence the neutral stability curves in the (E, p) turn into the iii and B axes. 
In other words, when s + 0 (or s+l) the stable state region vanishes asymptotically. 
Consequently, a two-p&e structure with thin periodic nucleation surfaces is unstable for all 
II, flandh. 

We note two more asymptotic cases. When h+ -h_ + +oo we arrive at the solution of the 
stability problem for a coherent boundary between half-spaces [2]. As h+ +m, h_ - 1, we 
obtain the solution to the stability problem for a plane nucleation layer for the new phase in an 
infinite elastic matrix of the original phase [5], 
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Results of numerical calculations 

The roots & and fi2 of the neutral stability equation (3.2) were calculated on a computer for various 

values of the parameters ?I, s, h and x. For x = 0.1, h = 2, Figs 5 and 6 show graphs of the dependence of 
the critical values of the parameter g (i.e. the roots g, and pz) on 5 and s for the half-plane b 3 0. The 
continuation to the half-plane p d 0 is found using symmetry. The stable and unstable regions can be 

marked out using the above analysis of cases (A)-(C). 

In the local stability analysis of a single coherent boundary in [2], two branches of the neutral stability 

hyperbola were found ([2], Fig. 1). As can be seen in Fig. 6, each of the branches for h c +- is replaced by 

two new curves. When h + +-, these curves become a hyperbola [2], while for h + 0 they become the 
curves shown in Fig. 2. Here the qualitative difference between the stability conditions for a single plane 
new phase nucleation layer in an infinite elastic matrix [S] and a two-phase periodic structure of 
nucleation layers unstable with respect to long-period perturbations becomes manifest, and the periodic 
structure, as was shown above, can be stable with respect to such perturbations. 

If in case (A) for some ?I, h ands the discriminant of Eq. (3.2) vanishes, then g, = f3, : in the parameter 
space of E, h, s and g the hypersurface g= B,(ZI, h, s) turns into the hypersurface g=g,(ti, h, s). The 
values of ZI, h and s indicated in Figs 5 and 6 governs the points of inflection of the curves g(s) and m). 

The points of inflection are indicated by s. and Z. 

For SE[S’, s.], 7ii=-O.8 andfor l?E[a;, ?I, 1, s = 0.1, 0.5, 0.9 the branches of the critical value curves 

of the parameter jJ, respectively, determine the two-valued functions B(z) and @ii), and when 0 s g d pi 

the system is stable (see the analysis of case A), while for g1 s g G g, it is unstable, i.e. increasing 1st in 
these cases causes instability. This means that here the “shear instability” of the two-phase periodic 

structure occurs with respect to perturbations with finite period (0 <h <-too). In the case under 
consideration, as opposed to the long-period perturbation case, the system becomes stable for b, es- 
here the stabilizing role of the parameter fl becomes manifest (for h + 0 we had gz + -) [2,3]. 

FIQ .5. 
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The effect of “shear instability” is a distinguishing feature of layered systems with coherent interphase 

boundaries. A similar effect is impossible in layered systems found in states of plane homogeneous 
deformation and containing phase-transformation surfaces with slippage [l], because for non-zero shear 
stress components cr,, the equilibrium condition is not satisfied. 

I wish to thank M. A. Grinfel’d for numerous discussions. 
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